Fuzzy Relevance Feedback in Image Retrieval for Color Feature Using Query Vector Modification Method

Author:

Widyanto M. Rahmat, ,Maftukhah Tatik,

Abstract

Fuzzy relevance feedback using Query Vector Modification (QVM) method in image retrieval is proposed. For feedback, the proposed six relevance levels are: “very relevant”, “relevant”, “few relevant”, “vague”, “not relevant”, and “very non relevant”. For computation of user feedback result, QVM method is proposed. The QVM method repeatedly reformulates the query vector through user feedback. The system derives the image similarity by computing the Euclidean distance, and computation of color parameter value by Red, Green, and Blue (RGB) color model. Five steps for fuzzy relevance feedback are: image similarity, output image, computation of membership value, feedback computation, and feedback result. Experiments used QVM method for six relevance levels. Fuzzy relevance feedback using QVM method gives higher precision value than conventional relevance feedback method. Experimental results show that the precision value improved by 28.56% and recall value improved 3.2% of conventional relevance feedback. That indicated performance Image Retrieval System can be improved by fuzzy relevance feedback using QVM method.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference14 articles.

1. F. Long, H. Zhang, and D. D. Feng, “Fundamentals of Content-Based Image Retrieval,” unpublished.

2. R. S. Torres and A. X. Falcao, “Content-Based Image Retrieval: Theory and Application,” RITA, Vol.XIII, No.2, 2006.

3. J. Eakins and M. Graham, “Content-based Image Retrieval,” JISC Technology Application, University of Nothumbria, October, 1999.

4. A. D. Grossman and O. Frieder, “Information Retrieval, Algorithms and Heuristics,” Springer, 2004.

5. S. Deb and Y. Zhang, “An Overview of Content-Based Image Retrieval Techniques,” AINA’04, IEEE, 2004.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximation of CIEDE2000 color closeness function using Neuro-Fuzzy networks;Applied Intelligence;2021-04-09

2. FHSI: Toward More Human-Consistent Color Representation;Journal of Advanced Computational Intelligence and Intelligent Informatics;2016-05-19

3. Image retrieval with feature selection and relevance feedback;2010 IEEE International Conference on Image Processing;2010-09

4. Fuzzy Logic for Image Retrieval and Image Databases;Intelligent Multimedia Databases and Information Retrieval

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3