Relative Magnitude of Gaussian Curvature via Self-Calibration

Author:

Ding Yi, ,Iwahori Yuji,Nakagawa Takashi,Nakamura Tsuyoshi,He Lifeng,Woodham Robert J.,Itoh Hidenori, , ,

Abstract

Gaussian curvature encodes important information about object shape. This paper presents a technique to recover the relative magnitude of Gaussian curvature from multiple images acquired under different conditions of illumination. Previous approaches make use of a separate calibration sphere. Here, we require no distinct calibration object. The novel idea is to use controlled motion of the target object itself for self-calibration. The target object is rotated in fixed steps in both the vertical and the horizontal directions. A distinguished point on the object serves as a marker. Neural network training data are obtained from the predicted geometric positions of the marker under known rotations. Four light sources with different directions are used. An RBF neural network learns the mapping of image intensities to marker position coordinates along a virtual sphere. Neural network maps four image irradiances on the target object onto a point on a virtual sphere. The area value surrounded by four mapped points onto a sphere gives an approximate value of Gaussian curvature. The modification neural network is learned for the basis function to obtain more accurate Gaussian curvature. Spatially varying albedo is allowed since the effect of albedo can be removed. It is shown that self-calibration makes it possible to recover the relative magnitude of Gaussian curvature at each point without a separate calibration object. No particular functional model of surface reflectance is assumed. Experiments with real data are demonstrated. Quantitative error analysis is provided for a synthetic example.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference11 articles.

1. R. J. Woodham, “Gradient and curvature from the photometric stereo method, including local confidence estimation,” J. of the Optical Society of America, A, Vol.11, pp. 3050-3068, 1994.

2. Y. Iwahori, R. J. Woodham, and A. Bagheri, “Principal Components Analysis and Neural Network Implementation of Photometric Stereo,” Proc. IEEEWorkshop on Physics-Based Modeling in Computer Vision, pp. 117-125, 1995.

3. Y. Iwahori, R. J. Woodham, M. Ozaki, H. Tanaka, and N. Ishii, “Neural Network Based Photometric Stereo with a Nearby Rotational Moving light Source,” IEICE Trans. on Information and Systems, Vol.E80-D, No.9, pp. 948-957, 1997.

4. E. Angelopoulou and L.B. Wolf, “Sign of Gaussian Curvature from Curve Orientation in Photometric Space,” IEEE Trans. on PAMI, Vol.20, No.10, pp. 1056-1066, 1998.

5. T. Okatani and K. Deguchi, “Determination of Sign of Gaussian Curvature of Surface from Photometric Data,” Trans. of IPSJ, Vol.39, No.5, pp. 1965-1972, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3