Application of Bispectrum Dimensionality Reduction Method in Ultrasonic Echo Signal Processing

Author:

Tang Jian,Yu Wenxiu,Zhao Guoxin,Jiao Xiangdong,Ding Xuepeng, , ,

Abstract

Processing ultrasonic echo signals to obtain high-precision residual thickness information of the pipeline wall is the key to nondestructive testing of corrosion of a long-distance pipeline. The traditional power spectrum estimation method assumes that an analyzed echo signal is Gaussian, and the useful information is insufficiently extracted, which leads to errors in the processing results. In this paper, to solve this problem, the bispectrum, which requires the least amount of computation in higher-order spectral estimation, is proposed to process an echo signal with a non-minimum phase and non-Gaussian characteristics. The bispectrum is projected onto a one-dimensional frequency space using the dimensionality reduction method, and one-dimensional diagonal slices of the bispectrum are extracted to analyze the characteristics of the echo signal, which significantly improves the intuitiveness of data processing. The experimental results show that the bispectrum dimensionality reduction method has high accuracy in processing ultrasonic echo signals, and the relative error of the residua wall thickness is below 2%. A C-scan image displaying the shape, size, depth, and other characteristics of pipeline corrosion obtained by the proposed method is much better than that using the traditional power spectrum estimation method. Therefore, the proposed method is suitable for nondestructive testing of corrosion of long-distance pipelines.

Funder

Beijing Municipal Commission of Education

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3