Interactive Motion Planning for Mobile Robot Navigation in Dynamic Environments

Author:

Hoshino Satoshi, ,Uchida Kenichiro

Abstract

In dynamic environments, taking static and moving obstacles into consideration in motion planning for mobile robot navigation is a technical issue. In this paper, we use a single mobile robot, for which humans are moving obstacles. Since moving humans sometimes get in the way of the robot, it must avoid collisions with them. Furthermore, if a part of the environment is crowded with humans, it is better for the robot to detour around the congested area. For this navigational challenge, we focus on the interaction between humans and the robot, so this paper proposes a motion planner for successfully getting through the human-robot interaction. The interactive motion planner is based on the hybrid use of global and local path planners. Furthermore, the local path planner is executed repetitively during the navigation. Through the human-robot interaction, the robot is enabled not only to avoid the collisions with humans but also to detour around congested areas. The emergence of this movement is the main contribution of this paper. We discuss the simulation results in terms of the effectiveness of the proposed motion planner for robot navigation in dynamic environments that include humans.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Generation of Multidestination Routes for Autonomous Wheelchairs;Journal of Robotics and Mechatronics;2020-12-20

2. Analysis of Velocity Pattern of a Power-Assisted Mobile Robot;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-11-20

3. Tracking control and identification of interaction forces for a rehabilitative training walker whose centre of gravity randomly shifts;International Journal of Control;2019-06-28

4. An Effective Mathematical Programming Model for Production Automatic Robot Path Planning;The Open Transportation Journal;2019-03-26

5. Design of Laser Rangefinder for Obstacle Avoidance of Intelligent Robot in Cloud Computing Environment;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3