Author:
Tangel Martin Leonard, ,Fatichah Chastine,Yan Fei,Betancourt Janet Pomares,Widyanto Muhammad Rahmat,Dong Fangyan,Hirota Kaoru, ,
Abstract
The dental numbering for periapical radiograph based on multiple fuzzy attribute approach proposed here analyzes each individual tooth based on multiple criteria such as area/perimeter and width/height ratios. The classification and numbering in a special dental image called a periapical radiograph is studied without speculative classification in cases of ambiguous objects, so an accurate, assistive result is obtained due to the capability of handling ambiguous teeth. Experiment results in using periapical dental radiograph from the University of Indonesia indicate a total classification accuracy of 82.51%, an average classification rate per input radiograph of 84.29%, a maxilla-mandible identification accuracy from 78 radiographs of 82.05%, and a numbering accuracy from 15 radiographs of 90.47%. It is planned that the proposed classification and numbering be implemented as a submodule for dental-based personal identification now being developed.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference12 articles.
1. M. Petju, A. Suteerayongprasert, R. Thongpud, and K. Hassiri, “Importance of dental records for victim identification following the Indian ocean tsunami disaster in Thailand,” The Royal Institute of Public Health, Vol.121, No.4, pp. 251-257, 2007.
2. O. Nomir and M. Abdel-Mottaleb, “Hierarchical contour matching for dental x-ray radiographs,” Pattern Recognition, Vol.41, No.1, pp. 130-138, 2008.
3. M. Abdel-Mottaleb, O. Nomir, D. E. Nassar, G. Fahmy, and H. H. Ammar, “Challenges of developing an automated dental identification system,” IEEE Int. Mid-west Symposium. Circuits System, Vol.1, pp. 411-414, 2003.
4. A. K. Jain and H. Chen, “Matching of dental x-ray images for human identification,” Pattern Recognition, Vol.37, No.7, pp. 1519-1532, 2004.
5. Y. H. Lai and P. L. Lin, “Effective segmentation for dental x-ray images using texture-based fuzzy inference,” Advanced Concepts for Intelligent Vision Systems, LNCS, Vol.5259, pp. 936-947, 2008.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献