Fragility Fracture of Pelvis Prediction from Computed Tomography Using Boring Survey and Convolutional Neural Network

Author:

Rahman Rashedur1,Yagi Naomi2ORCID,Hayashi Keigo3,Maruo Akihiro3,Muratsu Hirotsugu3,Kobashi Syoji1

Affiliation:

1. Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan

2. Advanced Medical Engineering Research Institute, University of Hyogo, 3-264 Kamiya-cho, Himeji, Hyogo 670-0836, Japan

3. Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiya-cho, Himeji, Hyogo 670-8560, Japan

Abstract

Fragility fracture of pelvis (FFP) is increasingly affecting elderly population. Although computed tomography (CT) imaging is considered superior to conventional radiographic image for diagnosing FFP, clinicians face challenges in recognizing pelvic fractures owing to imaging contrast or feature size. This study proposes a method that combines boring survey based FFP candidate extraction from CT images and a newly developed convolutional neural network model. In addition, the proposed method also visualizes the probability of fracture on 3D bone surface data. The accuracy, precision, and recall of the proposed method were found to be 79.7%, 60.0%, and 80.6%, respectively. Furthermore, the 3D view of fracture probability on the pelvic bone surface allows for qualitative assessment and can support physicians to diagnose FFP. The findings indicate that the proposed method has potential for predicting FFP.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3