Microwave Filter Modeling and Intelligent Tuning

Author:

Wu Shengbiao, ,Cao Weihua,Wu Min,Liu Can

Abstract

Traditional filter tuning methods mainly entail tuning by electromagnetic simulation technology, which treats the tuned filter as an ideal model. However, the structure of the actual filter is relatively complex, and filter tuning becomes affected by the loss of resonant cavity, phase loading and high-order mode. In this study, to solve these problems, the tuning process was divided into four stages. First, the passband and suppression of the filter could be tuned to a reasonable range by using the phase attribute of the reflection characteristics. Secondly, the tuning model parameters (coupling matrix) were extracted by curve fitting and the improved Cauchy method. Thirdly, the tuning model of the actual filter was established by a complex neural network. Finally, the mapping relationship between the surrogate model and the actual tuning model was established by the improved space mapping algorithm. By optimizing the parameters of surrogate model, we quickly obtained the optimal position of the screws. The results of the tuning experiment with the eighth coaxial cavity filter revealed that the method had high accuracy and fast convergence speed.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3