An Artificial Intelligence Approach to Develop a Time-Series Prediction Model of the Arc Furnace Resistance

Author:

Haruni Abu Mohammad Osman, ,Negnevitsky Michael

Abstract

The control scheme of an arc furnace electrode positioning system aims to deliver an optimum stable reaction zone below the electrodes by maintaining a fixpoint resistance. However, because of random movement of melted materials during melting period, the resistance of the arc furnace changes randomly. As a result, the electrodes have to move accordingly to obtain a fix-point resistance. Moreover, it is often found that the arc furnace resistance changes very fast and it is impossible for the electrode to track the random change of resistance. Consequently, the furnace becomes unstable and it is often impossible to achieve required production per unit power. Hence, the control system often relies on prediction tools. However, it is difficult to predict the arc furnace resistance using conventional mathematical models. As a result, in this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to capture the random and time-varying nature of arc furnace resistance. The performance of the proposed model is evaluated by presenting a case study where the outputs of the proposed model are compared with the data recorded from an actual metallurgical plant.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference21 articles.

1. ‘world steel organization,’ http://www.worldsteel.org/index.php?action=storypages&id=196

2. http://en.wikipedia.org/wiki/Electric_arc_furnace

3. E. A. C. Plata and H. E. Tacca, “Arc furnace modelling in ATP-EMPT,” Proc. of the Int. Conf. on power system transients (IPST’05), Montreal, Canada, June 19-23, 2005.

4. A. E. Emanuel and J. A. Orr, “An improved method of simulation of the arc voltage-current characteristics,” Proc. 9th Int. Conf. on harmonics and quality of power, Orlarndo, Florida, pp. 148-150, October 1-4, 2000.

5. R. C. Dugan, “Simulation of arc furnace power system,” IEEE Trans. on industrial application, Vol.IA-16, No.6, pp. 813-818, November 1980.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3