Author:
Endo Yasunori, ,Heki Ayako,Hamasuna Yukihiro, ,
Abstract
The non metricmodel is a kind of clustering method in which belongingness or the membership grade of each object in each cluster is calculated directly from dissimilarities between objects and in which cluster centers are not used. The clustering field has recently begun to focus on rough set representation instead of fuzzy set representation. Conventional clustering algorithms classify a set of objects into clusters with clear boundaries, that is, one object must belong to one cluster. Many objects in the real world, however, belong to more than one cluster because cluster boundaries overlap each other. Fuzzy set representation of clusters makes it possible for each object to belong to more than one cluster. The fuzzy degree of membership may, however, be too descriptive for interpreting clustering results. Rough set representation handles such cases. Clustering based on rough sets could provide a solution that is less restrictive than conventional clustering and more descriptive than fuzzy clustering. This paper covers two types of Rough-set-based Non Metric model (RNM). One algorithm is the Roughset-based Hard Non Metric model (RHNM) and the other is the Rough-set-based Fuzzy Non Metric model (RFNM). In both algorithms, clusters are represented by rough sets and each cluster consists of lower and upper approximation. The effectiveness of proposed algorithms is evaluated through numerical examples.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference25 articles.
1. J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum, New York, 1981.
2. J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, “Fuzzy Models and Algorithms for Pattern Recognition and Image Processing,” The Handbooks of Fuzzy Sets Series, 1999.
3. M. Roubens, “Pattern classification problems and fuzzy sets,” Fuzzy Sets and Systems, Vol.1, pp. 239-253, 1978.
4. J. C. Bezdek, J. W. Davenport, and R. J. Hathaway, “Clustering with the Relational c-Means Algorithms using Different Measures of Pairwise Distance,” Proc. of the 1988 SPIE Technical Symposium on Optics, Electro-Optics, and Sensors, Vol.938, R. D. Juday (Ed.), pp. 330-337, 1988.
5. R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational Duals of the c-Means Clustering Algorithms,” Pattern Recognition, Vol.22, No.2, pp. 205-212, 1989.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Objective-Based Rough Clustering with Fuzzy-Set Representation;Journal of Advanced Computational Intelligence and Intelligent Informatics;2015-09-20
2. On Objective-Based Rough Hard and Fuzzyc-Means Clustering;Journal of Advanced Computational Intelligence and Intelligent Informatics;2015-01-20