Affiliation:
1. Department of Informatics, Gunadarma University, Pondok Randu Street No.10, West Jakarta, DKI Jakarta 11750, Indonesia
Abstract
Narcotics are a grave crime that can lead to addiction, loss of consciousness, and even death. Furthermore, narcotics can damage society’s environment. Narcotics criminal cases have been reported widely in Indonesia. The variety of narcotics cases makes it extremely difficult for judges to make decisions. Therefore, it is necessary to study and analyze the judge’s decisions from the data on the narcotics cases. In this study, we propose using a machine learning approach based on K-means clustering method for clustering and analyzing the verdicts on narcotics cases to see the trend of the verdicts on narcotics cases. In addition, we also use latent Dirichlet allocation (LDA) topic modeling to study the trend of these narcotics cases. Based on the results of the study using K=3 for clustering, there were three categories of verdicts: decisions with light sentences (less than three years), decisions with moderate sentences (three to six years), and decisions with severe sentences (more than ten years). Furthermore, using topic modeling based on the LDA method, the top three topics of narcotics cases based on the verdicts were determined, namely: the first topic refers to verdicts where narcotics perpetrators are found guilty; the second topic refers to verdicts with evidence of marijuana-type narcotics; and the third topic refers to verdicts with evidence of methamphetamine-type narcotics.
Funder
Ministry of Education, Culture, Research, and Technology
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Customer Group Division and Precision Marketing Based on the DWKCN Algorithm;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-05-20