ASCNet: Attention Mechanism and Self-Calibration Convolution Fusion Network for X-ray Femoral Fracture Classification

Author:

Zhang Liyuan1ORCID,Liu Yusi1,He Fei1,Tang Xiongfeng2,Jiang Zhengang1

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, No.7089 Weixing Road, Changchun, Jilin 130022, China

2. Orthpoeadic Medical Center, Jilin University Second Hospital, No.218 Ziqiang Street, Changchun, Jilin 130041, China

Abstract

X-ray examinations are crucial for fracture diagnosis and treatment. However, some fractures do not present obvious imaging feature in early X-rays, which can result in misdiagnosis. Therefore, an ASCNet model is proposed in this study for X-ray femoral fracture classification. This model adopts the self-calibration convolution method to obtain more discriminative feature representation. This convolutional way can enable each spatial location to adaptively encode the context information of distant regions and make the model obtain some characteristic information hidden in X-ray images. Additionaly, the ASCNet model integrates the convolutional block attention module and coordinate attention module to capture different information from space and channels to fully obtain the apparent fracture features in X-ray images. Finally, the effectiveness of the proposed model is verified using the femoral fracture dataset. The final classification accuracy and AUC value of the ASCNet are 0.9286 and 0.9720, respectively. The experimental results demonstrate that the ASCNet model performs better than ResNet50 and SCNet50. Furthermore, the proposed model presents specific advantages in recognizing occult fractures in X-ray images.

Funder

Natural Science Foundation of Jilin Province

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3