Entity and Entity Type Composition Representation Learning for Knowledge Graph Completion

Author:

Ni Runyu1ORCID,Shibata Hiroki1,Takama Yasufumi1

Affiliation:

1. Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Ashigaoka, Hino, Tokyo 191-0065, Japan

Abstract

This paper proposes a simple knowledge graph embedding (KGE) framework that considers the entity type information without additional resources. The KGE is used to obtain vector representations of entities and relations by learning structured information in triples. The obtained vectors are used to predict the missing links in a knowledge graph (KG). Although many KGs contain entity type information, most of the existing methods ignored the potential of the entity type information for the link prediction task. The proposed framework, which is called entity and entity type composition representation learning (EETCRL), obtains vector representations of both entities and entity types, which are combined and used for link prediction. Experimental results on three datasets show that the EETCRL outperforms the baseline methods in most cases. Furthermore, the results obtained from tests with different model sizes show that the proposed framework can achieve high performance even with a small model size. This paper also discusses the effect of considering information about entity types on the link prediction task by analyzing the experimental results.

Funder

Japan Science and Technology Agency

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3