Development of an Automatic Landmine Detection and Marking System for the Demining Robot Gryphon

Author:

Kaneko Alex M., ,Fukushima Edwardo F.

Abstract

Mechanical systems or robots are designed to support human operators during complex and dangerous tasks such as demining operations. Even though the robot Gryphon was created to automate these operations, some of its tasks still rely greatly on the human operator, who has few or no assisting tools to perform efficient decisions. During the landmine detection and marking task in special, the operator is totally responsible for analyzing the scanned data and pointing the potential targets, which makes the system performance unstable and vulnerable to human factors. This article proposes an automatic method for finding potential targets, which the operator has the simple role of accepting or not the decisions taken by the automatic method. Experimental results showed that time duration, POD and FAR were greatly improved compared to the former methods.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference9 articles.

1. M. Hewish and R. Pengelley, “Treading a Fine Line: Mine Detection and Clearance,” Jane’s Int. Defense Review, Vol.30, No.11, pp. 30-47, 1997.

2. N. Pavkovic, J. Ishikawa, K. Furuta, K. Takahashi, M. Gaal, and D. Guelle, “Test and Evaluation of Japanese GPR-EMI Dual Sensor Systems at Benkovac Test Site in Croatia,” HCRCTRO TECH GPR 08-001, March, 2008.

3. S. Hirose and K. Kato, “Development of Quadruped Walking Robot With the Mission of Mine Detection and Removal,” Proc. IEEE Int. Conf. on Robot. and Automat., Leuven, Belgium, pp. 1713-1718, 1998.

4. E. F. Fukushima, M. Freese, T. Matsuzawa, T. Aibara, and S. Hirose, “Humanitarian Demining Robot Gryphon: Current Status and an Objective Evaluation,” Int. J. on Smart Sensing and Intelligent Systems, Vol.1, No.3, September 2008.

5. Minelab Electronics, “F3 Metal Mine Detector,” Instructors Notes and Syllabus, Issue 1.3, March, 2006.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3