Framework Design of an Edge Gateway System Supporting Multi-Protocol Standardized Access Detection

Author:

Zhao Xiaoyan12ORCID,Chen Ruiguang13,Li Jianwei1,Li Chunlei1,Chen Yan1,Zhang Tianyao14,Zhang Zhaohui14

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China

2. Shunde Innovation School, University of Science and Technology Beijing, 2 Zhihui Road, Daliang, Shunde District, Fo Shan, Guangdong 528399, China

3. Xi’an Precision Machinery Research Institute, Xi’an, Shaanxi 710077, China

4. Beijing Engineering Research Center of Industrial Spectrum Imaging, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China

Abstract

Recently, intelligent city construction has been promoted with the development of the Internet of things (IoT). The edge IoT gateway plays a critical role as the data aggregation core and processing center. Most existing gateways mainly solve heavy data storage and processing loads in cloud computing centers. There is less attention paid to multi-protocol data transmission and fusion. However, multiple products with different protocols in an IoT system require a flexible gateway compatible with multiple protocols. This paper proposes a multi-protocol edge gateway. The frame design was based on the actual demand for edge data acquisition. The gateway hardware platform used an RK3399 chip transplanted from the embedded operating system. It could support simultaneous multi-protocol access to ZigBee, LoRa, Bluetooth, and Wi-Fi. We combined the plug-and-play (PnP) hardware device access detection scheme with the system onboard interface driver to realize dynamic access detection and unified device management. In addition, the gateway also integrated data storage and access functions and partial edge computing functions. Finally, the experiment results verified that the multi-protocol edge gateway could meet the demand for data access and device control.

Funder

National Key Research and Development Program of China

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3