Author:
He Wang-Yong, ,Zhang Rui-Huan,Li Yong-Bo,Peng Jian
Abstract
The crossiterative proportion, integration, and differentiation (PID) Neural Networks control algorithm presented here enhances position synchronization control in machine tools driven by two ball screws. An electromechanical coupling dynamics model reflecting typical system characteristics is established and then, based on dynamic analysis, a coordination control between two motor forces is investigated by separating machine tool translational and rotational dynamics. Based on state feedback, we adopt a crossiterative PID Neural Networks control algorithm using the Lyapunov function to guarantee controller stability to achieve coordination between two motor forces. Computer simulation and experimental results indicate that the algorithm follows reference input well and shows good control performance in reducing synchronization errors. The proposed algorithm also has good control performance on a biaxial synchronous machine system regardless of whether interference effects are large or small.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference11 articles.
1. R. Smith, “Wide Bandwidth Control of High-Speed Milling Machine Feed Drives,” Ph.D. Thesis, University of Florida, Department of Mechanical Engineering, Florida, A.D., 1999.
2. M. Nakamura, O. Kunimatsu, S. Goto, and N. Kyura, “Method of contour control of industrial articulated robot arm by use of synchronous positioning control with dynamic compensation of master and slave axes,” Trans. of the Society of Instrument and Control Engineers, Vol.37, No.11, pp. 1062-1067, 2001.
3. D. Sun and R. Lu, “Synchronous Tracking Control of Parallel Manipulators Using Cross-coupling Approach,” The Int. . of Robotics Research, Vol.25, No.11, pp. 1137-1147, 2006.
4. D. J. Gordon, K. Erkorkmaz, “Precision control of a T-type gantry using sensor actuator averaging and active vibration damping,” Precision Engineering, Vol.36, pp. 299-314, 2012.
5. Y. Xiao and Y. Pang, “Synchronous control for high-accuracy biaxial motion systems,” Control Theory Application, Vol.11, No.2, pp. 294-298, 2013.