Adaptive Personalized Multiple Machine Learning Architecture for Estimating Human Emotional States
-
Published:2020-09-20
Issue:5
Volume:24
Page:668-675
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Matsufuji Akihiro, ,Sato-Shimokawara Eri,Yamaguchi Toru
Abstract
Robots have the potential to facilitate the future education of all generations, particularly children. However, existing robots are limited in their ability to automatically perceive and respond to a human emotional states. We hypothesize that these sophisticated models suffer from individual differences in human personality. Therefore, we proposed a multi-characteristic model architecture that combines personalized machine learning models and utilizes the prediction score of each model. This architecture is formed with reference to an ensemble machine learning architecture. In this study, we presented a method for calculating the weighted average in a multi-characteristic architecture by using the similarities between a new sample and the trained characteristics. We estimated the degree of confidence during a communication as a human internal state. Empirical results demonstrate that using the multi-model training of each person’s information to account for individual differences provides improvements over a traditional machine learning system and insight into dealing with various individual differences.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference32 articles.
1. B. Gonsior, S. Sosnowski, M. Buß, D. Wollherr, and K. Kühnlenz, “An emotional adaption approach to increase helpfulness towards a robot,” 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2429-2436, 2012. 2. M. L. Walters, D. S. Syrdal, K. Dautenhahn, R. te Boekhorst, and K. L. Koay, “Avoiding the uncanny valley, robot appearance personality and consistency of behavior in an attention seeking home scenario for a robot companion,” Autonomous Robots, Vol.24, No.2, pp. 159-178, 2008. 3. A. Cherubini, R. Passama, B. Navarro et al., “A collaborative robot for the factory of the future: BAZAR,” The Int. J. of Advanced Manufacturing Technology, Vol.105, No.9, pp. 3643-3659, 2019. 4. B. Choi, W. Lee, G. Park, Y. Lee, J. Min, and S. Hong, “Development and control of a military rescue robot for casualty extraction task,” J. of Field Robotics, Vol.36, No.4, pp. 656-676, 2019. 5. R. Meyer von Wolff, S. Hobert, and M. Schumann, “How May I Help You? – State of the Art and Open Research Questions for Chatbots at the Digital Workplace,” Proc. of the 52nd Hawaii Int. Conf. on System Sciences, 2019.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|