Classification of Liver Disease from CT Images Using a Support Vector Machine

Author:

Lee Chien-Cheng, ,Chen Sz-Han,Chiang Yu-Chun,

Abstract

We propose a classifier based on the support vector machine (SVM) for automatic classification in liver disease. The SVM, stemming from statistical learning theory, involves state-of-the-art machine learning. The classifier is a part of computer-aided diagnosis (CADx), which assists radiologists in accurately diagnosing liver disease. We formulate discriminating between cysts, hepatoma, cavernous hemangioma, and normal tissue as a supervised learning problem, and apply SVM to classifying the diseases using gray level and co-occurrence matrix features and region-based shape descriptors, calculated from regions of interest (ROIs), as input. Significant features of ROI enable us to simplify SVM input space and to feed the SVM representative information. By simplifying and clarifying the diagnosis process, we separate the classification of liver disease into hierarchical multiclass classification. We use the receiver operating characteristic (ROC) curve to evaluate diagnosis performance, demonstrating the classifier’s good performance.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Liver Disease Prediction (ILDP) System Using Machine Learning Models;Lecture Notes in Electrical Engineering;2021

2. Classification of Abdominal CT Images bearing Liver Tumor Using Structural Similarity Index and Support Vector Machine;Mehran University Research Journal of Engineering and Technology;2020-10-01

3. Big Data in Medical Image Processing;2018-01-29

4. Improving the Diagnosis of Liver Disease Using Multilayer Perceptron Neural Network and Boosted Decision Trees;Journal of Medical and Biological Engineering;2017-12-07

5. A Review of Data Mining Techniques and Applications;Journal of Advanced Computational Intelligence and Intelligent Informatics;2017-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3