Fuzzy Inference Based Vehicle to Vehicle Network Connectivity Model to Support Optimization Routing Protocol for Vehicular Ad-Hoc Network (VANET)

Author:

Lin Chehung, ,Dong Fangyan,Hirota Kaoru

Abstract

A Fuzzy Inference based Vehicle to Vehicle Network Connectivity Model is proposed to support Optimization Routing Protocol for Vehicular Ad-hoc Network (VANET), where the real-time vehicle to vehicle network connectivity situation of road segments is expressed using fuzzy inference according to the vehicle distribution situation, and the optimized routing protocol modifies the transmission path dynamically and optimizes packet forwarding. The proposed model expresses the real-time vehicle to vehicle network connectivity of each road segment that cannot be easily expressed directly by a mathematical model and decreases the end-to-end delay and the overall network control overhead. The computation time of the proposed protocol is analyzed and shown asO(IlgI+R+V) whereI,R, andVrepresent the number of intersections on a map, the number of road segments on a map, and the number of vehicles within communication range of the vehicle that wants to transfer a data packet, respectively. The simulation tools NS2 and TraNS are used to perform experiments that include wireless data packet transmission and vehicle mobility traces. The results show that the proposed method decreases end-to-end delay and decreases the control overhead by 20% compared with other routing protocols, e.g. GyTAR and RTRP. This proposal implements an intelligent transportation system application and a traffic-monitoring system in NS2 using the optimization routing protocol. This protocol will be implemented to develop a real vehicle telematics system using the embedded system to improve the user-driving experience.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference28 articles.

1. Y. Toor, P.Muhlethaler, and A. Laouiti, “Vehicle Ad Hoc networks: applications and related technical issues,” IEEE Communications Surveys & Tutorials, Vol.10, No.3, pp. 74-88, 2008.

2. Intelligent Transportation Systems (ITS) Standards Program Strategic Plan for 2011–2014. http://www.its.dot.gov/standards_strategic_plan/index.htm.

3. S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and L. Iftode, “TrafficView: a driver assistant device for traffic monitoring based on car-to-car communication,” IEEE 59th Vehicular Technology Conf., Vol.5, pp. 2946-2950, 2004.

4. Y. Ching-Yi and L. Shou-Chih, “Street Broadcast with Smart Relay for Emergency Messages in VANET,” IEEE 24th Int. Conf. on Advanced Information Networking and Applications Workshops (WAINA), pp. 323-328, 2010.

5. C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, and M. Mauve, “A routing strategy for vehicular ad hoc networks in city environments,” IEEE Proc. of Intelligent Vehicles Symposium, pp. 156-161, 2003.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Inference: Its Past and Prospects;Journal of Advanced Computational Intelligence and Intelligent Informatics;2017-01-20

2. Common Driving Notification Protocol Based on Classified Driving Behavior for Cooperation Intelligent Autonomous Vehicle Using Vehicular Ad-Hoc Network Technology;Journal of Artificial Intelligence and Soft Computing Research;2015-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3