Indoor Key Point Reconstruction Based on Laser Illumination and Omnidirectional Vision

Author:

Qi Yang, ,Li Yuan

Abstract

Efficient and precise three-dimensional (3D) measurement is an important issue in the field of machine vision. In this paper, a measurement method for indoor key points is proposed with structured lights and omnidirectional vision system and the system can achieve the wide field of view and accurate results. In this paper, the process of obtaining indoor key points is as follows: Firstly, through the analysis of the system imaging model, an omnidirectional vision system based on structured light is constructed. Secondly, the full convolution neural network is used to estimate the scene for the dataset. Then, according to the geometric relationship between the scenery point and its reference point in structured light, for obtaining the 3D coordinates of the unstructured light point is presented. Finally, combining the full convolution network model and the structured light 3D vision model, the 3D mathematical representation of the key points of the indoor scene frame is completed. The experimental results proved that the proposed method can accurately reconstruct indoor scenes, and the measurement error is about 2%.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference19 articles.

1. H. Zhang, C. Reardon, and L. E. Parker, “Real-Time Multiple Human Perception With Color-Depth Cameras on a Mobile Robot,” IEEE Trans. on Cybernetics, Vol.43, No.5, pp. 1429-1441, 2013.

2. Q. Zhou, Y. Yang, and Z. Wang, “Structured Light Measurement Technique Based on Binocular Stereo Vision,” Computer Engineering, Vol.44, No.7, pp. 244-249+258, 2018 (in Chinese).

3. L. Yang, B. Wang, R. Zhang, H. Zhou, and R. Wang, “Analysis on Location Accuracy for the Binocular Stereo Vision System,” IEEE Photonics J., Vol.10, No.1, Article No.7800316, 2017.

4. S. Ding, X. Zhang, Q. Yu, and X. Yang, “Overview of Non-Contact 3D Reconstruction Measurement Methods,” Laser & Optoelectronics Progress, Vol.54, No.7, pp. 27-41, 2017 (in Chinese).

5. J. Yang and H. Chen, “The 3D reconstruction of face model with active structured light and stereo vision fusion,” Proc. of the 3rd IEEE Int. Conf. on Computer and Communications (ICCC), pp. 1902-1906, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3