Query Expansion Using Conceptual Fuzzy Sets for Search Engines
-
Published:2003-02-20
Issue:1
Volume:7
Page:2-5
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Tajima Masanori, ,Kawabata Takayuki,Tomiyama Tomoe,Takagi Tomohiro,
Abstract
We propose a search engine which conceptually matches input keywords and text datas. The conceptual matching is realized by context-dependent keyword expansion using conceptual fuzzy sets. First, we show the necessity and also the problems of applying fuzzy sets to information retrieval. Next, we introduce the usefulness of conceptual fuzzy sets in overcoming those problems, and propose the realization of conceptual fuzzy sets using Hopfield Networks. We also propose the architecture of the search engine which can execute conceptual matching dealing with context-dependent word ambiguity. Finally, we evaluate our proposed method through a simulation of retrieving large number of article datas, and compare the proposed method with the ordinary TF-IDF method. We show that our method can correlate seemingly unrelated input keywords and produce matching text datas, whereas the TF-IDF method cannot.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献