Automatic Neonatal Alertness State Classification Based on Facial Expression Recognition

Author:

Morita Kento,Shirai Nobu C.,Shinkoda Harumi,Matsumoto Asami,Noguchi Yukari,Shiramizu Masako,Wakabayashi Tetsushi, , , , , ,

Abstract

Premature babies are admitted to the neonatal intensive care unit (NICU) for several weeks and are generally placed under high medical supervision. The NICU environment is considered to have a bad influence on the formation of the sleep-wake cycle of the neonate, known as the circadian rhythm, because patient monitoring and treatment equipment emit light and noise throughout the day. In order to improve the neonatal environment, researchers have investigated the effect of light and noise on neonates. There are some methods and devices to measure neonatal alertness, but they place on additional burden on neonatal patients or nurses. Therefore, this study proposes an automatic non-contact neonatal alertness state classification method using video images. The proposed method consists of a face region of interest (ROI) location normalization method, histogram of oriented gradients (HOG) and gradient feature-based feature extraction methods, and a neonatal alertness state classification method using machine learning. Comparison experiments using 14 video images of 7 neonatal subjects showed that the weighted support vector machine (w-SVM) using the HOG feature and averaging merge achieved the highest classification performance (micro-F1 of 0.732). In clinical situations, body movement is evaluated primarily to classify waking states. The additional 4 class classification experiments are conducted by combining waking states into a single class, with results that suggest that the proposed facial expression based classification is suitable for the detailed classification of sleeping states.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference18 articles.

1. H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. V. Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications,” Lancet, Vol.379, No.9832, pp. 2162-2172, 2012.

2. Ministry of Health, Labour and Welfare, “Vital Statistics of Japan –The latest trends–,” 2017.

3. S. Blackburn, “Environmental impact of the NICU on developmental outcomes,” J. of Pediatric Nursing, Vol.13, No.5, pp. 279-289, 1998.

4. H. Shinkoda, Y. Kinoshita, R. Mitsutake, F. Ueno, H. Arata, C. Kiyohara, Y. Suetsugu, Y. Koga, K. Anai, M. Shiramizu, M. Ochiai, and T. Kaku, “The influence of premature infants/sleep and physiological response under NICU environment (illuminance, noise) – Seen from circadian variation and comparison of day and night –,” Mie Nursing J., Vol.17, No.1, pp. 35-44, 2015 (in Japanese).

5. M. Shiramizu and H. Shinkoda, “A pilot study to examine the most suitable lighting environment for the premature infants: Analysis of amount of activity and physiological response by using Actigraph,” Mie Nursing J., Vol.18, No.1, pp. 15-21, 2016 (in Japanese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3