SVM Compound Kernel Functions for Vehicle Target Classification

Author:

Roxas Edison A., ,Vicerra Ryan Rhay P.,Lim Laurence A. Gan,Dadios Elmer P.,Bandala Argel A.

Abstract

The focus of this paper is to explore the use of kernel combinations of the support vector machines (SVMs) for vehicle classification. Being the primary component of the SVM, the kernel functions are responsible for the pattern analysis of the vehicle dataset and to bridge its linear and non-linear features. However, the choice of the type of kernel functions has characteristics and limitations that are highly dependent on the parameters. Thus, in order to overcome these limitations, a method of compounding kernel function for vehicle classification is hereby introduced and discussed. The vehicle classification accuracy of the compound kernel function presented is then compared to the accuracies of the conventional classifications obtained from the four commonly used individual kernel functions (linear, quadratic, cubic, and Gaussian functions). This study provides the following contributions: (1) The classification method is able to determine the rank in terms of accuracies of the four individual kernel functions; (2) The method is able to combine the top three individual kernel functions; and (3) The best combination of the compound kernel functions can be determined.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference27 articles.

1. S. Sivaraman and M. M. Trivedi, “Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis,” IEEE Trans. on Intelligent Transportation Systems, Vol.14, No.4, pp. 1773-1795, 2013.

2. A. R. F. Quiros, R. A. Bedruz, A. C. Uy, A. Abad, A. Bandala, and E. P. Dadios, “Machine vision of traffic state estimation using fuzzy logic,” 2016 IEEE Region 10 Conf. (TENCON), 2016.

3. A. C. P. Uy, A. R. F. Quiros, R. A. Bedruz, A. Abad, A. Bandala, E. Sybingco, and E. P. Dadios, “Automated traffic violation apprehension system using genetic algorithm and artificial neural network,” 2016 IEEE Region 10 Conf. (TENCON), 2016.

4. A. Nag, D. J. Miller, A. P. Brown, and K. J. Sullivan, “Combined Generative-Discriminative Learning for Object Recognition using Local Image Descriptors,” IEEE Workshop on Machine Learning for Signal Processing, 2007.

5. B. Benfold and I. Reid, “Stable Multi-Target Tracking in Real-Time Surveillance Video,” IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3