Human Motion Capture and Recognition Based on Sparse Inertial Sensor

Author:

Xia Huailiang1,Zhao Xiaoyan12,Chen Yan2,Zhang Tianyao2,Yin Yuguo3,Zhang Zhaohui124

Affiliation:

1. Shunde Innovation Institute, University of Science and Technology Beijing, Fo Shan 528399, China

2. School of Automation and Electrical Engineering, University of Science and Technology Beijing, 30# Xueyuan Road, Haidian District, Beijing 100083, China

3. Shandong Start Measurement and Control Equipment Co., Ltd., No.600 Xinyi Road, Weifang, Shandong 261101, China

4. Beijing Engineering Research Center of Industrial Spectrum Imaging, University of Science and Technology Beijing, 30# Xueyuan Road, Haidian District, Beijing 100083, China

Abstract

The field of human motion capture technology represents an emergent and multifaceted domain that encapsulates various disciplines, including but not limited to computer graphics, ergonomics, and communication technology. A distinct network platform within its domain has been established to ensure the reliability and stability of data transmission. Moreover, a sink node has been configured to facilitate sensor data reception through two distinct channels. Notably, the simplicity of the measurement system is directly proportional to the limited number of sensors used. This study focuses on accurately estimating uncertain human 3D movements via a sparse arrangement of wearable inertial sensors, utilizing only six sensors within the system. The methodology is based on a time series sequence throughout the motion process, wherein a series of discontinuous actions constitute the sequential motion. Deep learning methodologies, specifically recurrent neural networks, were employed to refine the regression parameters. Our approach integrated both historical and present sensor data to forecast future sensor data. These data were amalgamated into a superposed input vector, which was fed back into a shallow neural network to estimate human motion. Our experimental results demonstrate the viability of this approach: the six sensors could accurately replicate representative poses. This finding carries significant implications for advancing and applying wearable devices within the realm of motion capture, offering the potential for widespread adoption and implementation.

Funder

National Key Research and Development Project

Scientific and Technological Innovation Foundation

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3