An Efficient Scheduling Strategy for Collaborative Cloud and Edge Computing in System of Intelligent Buildings

Author:

Feng Xiaodong12,Yi Lingzhi2,Liu Ning2,Gao Xieyi2,Liu Weiwei3,Wang Bin4

Affiliation:

1. Huaneng Hunan Yueyang Power Generation Co., Ltd., Yueyanglou District, Yueyang, Hunan 414000, China

2. Hunan Province Engineering Research Center for Multi-Energy Collaborative Control Technology, School of Automation and Electronic Information, Xiangtan University, Yuhu District, Xiangtan, Hunan 411105, China

3. Xiangtan of Hunan Branch, China Telecom, Yuhu District, Xiangtan, Hunan 411100, China

4. Zhangjiajie of Hunan Branch, China Mobile Communications Group Co., Ltd., Yingbin Road, Yongding District, Zhangjiajie, Hunan 427000, China

Abstract

Edge computing is a new computing method, and task scheduling is challenging work. Using edge computing in intelligent buildings for managing smart home devices has gained popularity because it can reduce the delay and network congestion brought by cloud computing. Edge computing has the advantage of fast response speeds, but its computing capacity is limited. To solve this practical problem, a system framework of collaborative cloud and edge computing is constructed for intelligent buildings. First, the communication time, task completion time, and CPU energy consumption are considered comprehensively, and a mathematical model of the system is developed. Considering the compute-intensity task, the splitting ratio is determined for tasks to achieve the collaboration of cloud computing and edge computing. Then, the search mechanism of a single gene mutation in the genetic algorithm (GA) is introduced to compensate for the defects of the salp swarm algorithm (SSA), while focusing on the search ability and optimization efficiency. Finally, the proposed strategy is theoretically analyzed and experimentally evaluated. The simulation results show that the hybrid algorithm of SSA-GA has better performance than other algorithms, and the proposed collaborative cloud and edge computing task scheduling strategy demonstrated a lower delay and makespan.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3