Operation Skill Acquisition and Fuzzy-Rule Extraction for Drone Control Based on Visual Information Using Deep Learning

Author:

Maeda Yoichiro,Sano Kotaro,Cooper Eric W.,Kamei Katsuari, ,

Abstract

In recent years, much research on the unmanned control of a moving vehicle has been conducted, and various robots and motor vehicles moving automatically are being used. However, the more complicated the environment is, the more difficult it is for the autonomous vehicles to move automatically. Even in such a challenging environment, however, an expert with the necessary operation skill can sometimes perform the appropriate control of the moving vehicle. In this research, a method for learning a human’s operation skill using a convolutional neural network (CNN) and setting visual information for input is proposed for learning more complicated environmental information. A CNN is a kind of deep-learning network, and it exhibits high performance in the field of image recognition. In this experiment, the operation knowledge was also visualized using a fuzzy neural network with obtained input-output maps to create fuzzy rules. To verify the effectiveness of this method, an experiment involving operation skill acquisition by some subjects using a drone control simulator was conducted.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference13 articles.

1. S. Yasunobu and T. Matsubara, “Fuzzy Target Acquired by Reinforcement Learning for Parking Control,” Proc. of SICE Annual Conf. 2003 (SICE2003), pp. 1303-1308, 2003.

2. S. Suzuki, Y. Sanematsu, and H. Takahara, “Analysis of Human Pilot Maneuver Using Neural Network Modeling,” Proc. of the 24th Int. Congress of the Aeronautical Sciences (ICAS 2004), pp. 1-7, 2004.

3. M. Takeuchi, J. Shimodaira, Y. Amaoka, S. Hamatani, H. Hirai, and F. Miyazaki, “Reconstruction of Human Skills by Using PCA and Transferring them to a Robot,” J. Robot. Mechatron., Vol.26, No.1, pp. 51-58, 2014.

4. K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration learning of robot behavior using deep neural networks,” Robotics and Autonomous Systems, Vol.62, Issue 6, pp. 721-736, 2014.

5. K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa, “Autonomous Flying Robots,” Springer, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3