Coarse TRVO: A Robust Visual Odometry with Detector-Free Local Feature

Author:

Gao Yuhang, ,Zhao Long

Abstract

The visual SLAM system requires precise localization. To obtain consistent feature matching results, visual features acquired by neural networks are being increasingly used to replace traditional manual features in situations with weak texture, motion blur, or repeated patterns. However, to improve the level of accuracy, most deep learning enhanced SLAM systems, which have a decreased efficiency. In this paper, we propose Coarse TRVO, a visual odometry system that uses deep learning for feature matching. The deep learning network uses a CNN and transformer structures to provide dense high-quality end-to-end matches for a pair of images, even under indistinctive settings with low-texture regions or repeating patterns occupying the majority of the field of view. Meanwhile, we made the proposed model compatible with NVIDIA TensorRT runtime to boost the performance of the algorithm. After obtaining the matching point pairs, the camera pose is solved in an optimized way by minimizing the re-projection error of the feature points. Experiments based on multiple data sets and real environments show that Coarse TRVO achieves a higher robustness and relative positioning accuracy in comparison with the current mainstream visual SLAM system.

Funder

Natural Science Foundation of Beijing Municipality

National Science Foundation

National Key Research and Development Program of China

Aeronautical Science Foundation of China

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3