Proposal of Decision-Making Method Under Multi-Task Based on Q-Value Weighted by Task Priority

Author:

Hanagata Tomomi, ,Kurashige Kentarou

Abstract

Robots make decisions in a variety of situations requiring multitasking. Therefore, in this work, a method is studied to address multiple tasks based on reinforcement learning. Our previous method selects an action when the q-values of the action for each task correspond to a priority value in the q-table. However, the decision-making would select an ineffective action in particular situations. In this study, an action value weighted by priority is defined (termed as action priority) to indicate that the selected action is effective in accomplishing the task. Subsequently a method is proposed for selecting actions using action priorities. It is demonstrated that the proposed method can accomplish tasks faster with fewer errors.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference12 articles.

1. Y. Yamazaki, M. Ishii, T. Ito, and T. Hashimoto, “Frailty Care Robot for Elderly and Its Application for Physical and Psychological Support,” J. Adv. Comput. Intell. Intell. Inform., Vol.25, No.6, pp. 944-952, 2021.

2. Y. Fuse, H. Takenouchi, and M. Tokumaru, “A Robot in a Human–Robot Group Learns Group Norms and Makes Decisions Through Indirect Mutual Interaction with Humans,” J. Adv. Comput. Intell. Intell. Inform., Vol.24, No.1, pp. 169-178, 2020.

3. T. Minato and M. Asada, “Environmental change adaptation for mobile robot navigation,” Proc. of 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems: Innovations in Theory, Practice and Applications, Vol.3, pp. 1859-1864, 1998.

4. T. Hagiwara and M. Ishikawa, “Emergence of Behaviors by Reinforcement Learning Based on the Desire for Existence,” Brain-Inspired Information Technology, Vol.266, pp. 39-44, 2010.

5. N. Yoshida, “On reward function for survival,” Joint 8th Int. Conf. on Soft Computing and Intelligent Systems and 2016 17th Int. Symp. on Advanced Intelligent Systems (SCIS&ISIS), 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3