A Two-Phase Complete Algorithm for Multi-Objective Distributed Constraint Optimization

Author:

Medi Alexandre, ,Okimoto Tenda,Inoue Katsumi, ,

Abstract

A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that can formalize various applications related to multi-agent cooperation. Many application problems in multi-agent systems can be formalized as DCOPs. However, many real world optimization problems involve multiple criteria that should be considered separately and optimized simultaneously. A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP) is an extension of a mono-objective DCOP. Compared to DCOPs, there exists few works on MO-DCOPs. In this paper, we develop a novel complete algorithm for solving an MO-DCOP. This algorithm utilizes a widely used method called Pareto Local Search (PLS) to generate an approximation of the Pareto front. Then, the obtained information is used to guide the search thresholds in a Branch and Bound algorithm. In the evaluations, we evaluate the runtime of our algorithm and show empirically that using a Pareto front approximation obtained by a PLS algorithm allows to significantly speed-up the search in a Branch and Bound algorithm.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference15 articles.

1. P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “ADOPT: asynchronous distributed constraint optimization with quality guarantees,” Artificial Intelligence, Vol.161, No.1-2, pp. 149-180, 2005.

2. A. Petcu and B. Faltings, “A Scalable Method for Multiagent Constraint,” Optimization, pp. 266-271, 2005.

3. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham, “Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling,” Proc. of the 3rd Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 310-317, 2004.

4. V. Lesser, C. Ortiz, and M. Tambe (Eds.), “Distributed Sensor Networks: A Multiagent Perspective,” Vol.9, 2003.

5. R. Junges and A. L. C. Bazzan, “Evaluating the performance of DCOP algorithms in a real world, dynamic problem,” Proc. of the 7th Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 599-606, 2008.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3