Interactive Data Mining Tool for Microarray Data Analysis Using Formal Concept Analysis

Author:

Tanabata Takanari, ,Hirose Fumiaki,Hashikami Hidenobu,Nobuhara Hajime,

Abstract

The DNA microarray analysis can explain gene functions by measuring tens of thousands of gene expressions at once and analyzing gene expression profiles that are obtained from the measurement. However, gene expression profiles have such a vast amount of information and therefore most analyses work are done on the data narrowed down by statistical methods, there remains a possibility ofmissing out on genes that consist the factors of phenomena from their evaluations. This study propose a method based on a formal concept analysis to visualize all gene expression profiles and characteristic information that can be obtained from annotation information of each gene so that the user can overview them. In the formal concept analysis, a lattice structure that allows genes to be hierarchically classified and made viewable is built based on the inclusion relations of attributes from a context table in which gene is the object and the attributes are expression profiles and binarized characteristic information. With the proposed method, the user can change the overview state by adjusting the expression ratio and the binary state of characteristic information, understand the relational structure of gene expressions, and carry out analyses of gene functions. We develop software to practice the proposed method, and then ask a biologist to evaluate effectiveness of proposed method applied to a function analysis of genes related to blue light signaling of rice seedlings.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Algorithm for Recomputing Concepts in Microarray Data Analysis by Biological Lattice;Journal of Advanced Computational Intelligence and Intelligent Informatics;2013-09-20

2. A bottom-up algorithm of vertical assembling concept lattices;International Journal of Data Mining and Bioinformatics;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3