Neural Network Structure Analysis Based on Hierarchical Force-Directed Graph Drawing for Multi-Task Learning

Author:

Shibata Atsushi, ,Dong Fangyan,Hirota Kaoru,

Abstract

A hierarchical force-directed graph drawing is proposed for the analysis of a neural network structure that expresses the relationship between multitask and processes in neural networks represented as neuron clusters. The process revealed by our proposal indicates the neurons that are related to each task and the number of neurons or learning epochs that are sufficient. Our proposal is evaluated by visualizing neural networks learned on the Mixed National Institute of Standards and Technology (MNIST) database of handwritten digits, and the results show that inactive neurons, namely those that do not have a close relationship with any tasks, are located on the periphery part of the visualized network, and that cutting half of the training data on one specific task (out of ten) causes a 15% increase in the variance of neurons in clusters that react to the specific task compared to the reaction to all tasks. The proposal aims to be developed in order to support the design process of neural networks that consider multitasking of different categories, for example, one neural network for both the vision and motion system of a robot.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference5 articles.

1. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochell, “Greedy Layer-Wise Training of Deep Networks,” Advances in Neural Information Processing Systems 19, pp. 153-160, 2007.

2. Y. Huang, W. Wang, L. Wang, and T. Tan, “Multi-task deep neural network for multi-label learning,” 20th the Int. Conf. on Image Processing, 2013.

3. T. Itoh, K. Inoue, J. Doi, K. Yasumasa, and I. Yuko, “An Improvement of Force-directed Graph Layout Method”, Report of Information Processing Society of Japan, Vol.2001, No.35, pp. 7-12, 2001 (in Japanese).

4. Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNITS DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ [Accessed August 2014]

5. R. B. Plam, “Deep Learning Toolbox,” https://github.com/rasmusbergpalm/DeepLearnToolBox [Accessed August 2014]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Growth Evaluation System for Tobacco Planting Based on Image Classification;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3