Author:
Omae Yuto,Furuya Tatsuro,Mizukoshi Kazutaka,Oshima Takayuki,Sakakibara Norihisa,Mizuochi Yoshiaki,Yatsushiro Kazuhiro,Takahashi Hirotaka, , , , , ,
Abstract
We aim to develop a real-time feedback system of learning strategies during lesson time to improve academic achievement. It has been known that mutual viewing-based learning is an effective educational method. However, even though mutual viewing is an effective lesson style, there are effective or ineffective learning strategies in the learners’ individual activities. In general, the method of evaluating learning strategies is a questionnaire survey. However, the questionnaire cannot measure the learning strategies in real time. Thus, it is difficult to detect the students who use ineffective learning strategies during lesson time in real time. Recently, a system that can measure the learning strategies in real time has been developed. Using this system, it is possible to detect students who use ineffective learning strategies during lesson time on the mutual viewing-based learning. From this point of view, we aim to develop a recommendation system for real-time learning strategies for teachers and students to achieve a highly educational effect. For this purpose, we must know the features of effective or ineffective learning strategies via a system that can measure learning strategies. In this paper, we report the discovery of features of effective or ineffective learning strategies based on the data-mining approach using thek-means method, transition diagram, and random forest. We classified the time-series learning strategies over 40 min into 216 strategies and surveyed the improvement probability of academic achievement via a random-forest-based classification model. By embedding our results into the system, we may be able to automatically detect students who use ineffective learning strategies and recommend effective learning strategies.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference23 articles.
1. T. Umemoto, “The Effects of Metacognitive and Motivational Regulation Strategies on the Use of Cognitive Strategies and Persistence in Learning,” Japan J. of Educational Technology, Vol.37, No.1, pp. 79-87, 2013.
2. Y. Omae, T. Mitsui, and H. Takahashi, “Effect on Satisfaction through Super Science High School’s Education,” 2015 IEEE/SICE Int. Symp. on System Integration, pp. 146-150, 2015.
3. C. A. Wolters and M. Hussain, “Investigating Grit and Its Relations with College Students’ Self-Regulated Learning and Academic Achievement,” Metacognition and Learning, Vol.10, No.3, pp. 293-311, 2015.
4. A. U. Chamot, “Language Learning Strategy Instruction: Current Issues and Research,” Annual Review of Applied Linguistics, Vol.25, pp. 112-130, 2005.
5. K. Cho and C. D. Schunn, “Scaffolded Writing and Rewriting in the Discipline: A Web-based Reciprocal Peer Review System,” Computers & Education, Vol.48, No.3, pp. 409-426, 2007.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Sequence Matters in Learning - A Systematic Literature Review;Proceedings of the 14th Learning Analytics and Knowledge Conference;2024-03-18
2. Intelligent Edutab Box: Supporting Real-Time Face-to-Face Collaborative Learning;Journal of Advanced Computational Intelligence and Intelligent Informatics;2021-03-20