Author:
Hannachi M. Skander, ,Hatakeyama Yutaka,Hirota Kaoru
Abstract
An approach for emulating quantum circuits using conventional analog hardware is presented based on the intuitive similarity between fuzzy logic and quantum superposition, as well as some geometrical analogies. This approach has the advantage of being easy to implement on dedicated hardware for parallel processing of membership functions and fuzzy inference, compared to conventional quantum computing, which requires quantum mechanical systems which are extremely sensitive to noise and difficult to extend to large scale systems. Using geometrical analogies and a suitable transformation, qubits are modeled as pairs of fuzzy membership functions evolving on the unit square and basic one qubit gates are modeled as transformations on this unit square. A fuzzy implementation of the one bit and two bit Deutsch-Jozsa algorithm is proposed. Physical implementation and advantages, such as the possibility of implementing nonlinear or non-unitary gates, as well as drawbacks of the proposed model compared to conventional quantum computing are shown.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献