Research on Policy Text Clustering Algorithm Based on LDA-Gibbs Model

Author:

Ma Haiqun,Zhang Tao, , ,

Abstract

Policy text contains large amount of diversified data and strictly conforms to standards and specifications, but the traditional text clustering method cannot solve the problems of high dimensionality, sparse features, and similar meanings, so this paper proposes a weighted algorithm based on the LDA-Gibbs model to improve the accuracy of policy text clustering. Firstly, it provides realistic basis for the assumptions of the LDA-Gibbs topic model and the weighted algorithm; secondly, it pre-processes the existing policy text simulated data, establishes the LDA-Gibbs model, forms a weighted algorithm, and generates training data to determine the number of optimal topics in the LDA-Gibbs model and completes the final clustering of the policy text; finally, by summarizing, classifying and deducing the conclusions of the experimental data, this paper proves the objective validity and effects of this method. Hopefully the overall design of this method can be applied in the prospective study on the formulation of new policies in the future, the retrospective evaluation and testing of the existing policies and the formation of a two-way interactive mechanism.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference16 articles.

1. L. Pei, J. Sun, and Z. Zhou, “Policy Text Computing: A New Methodology of Policy lnterpretation,” Library & Information, Vol.6, pp. 47-55, 2016.

2. S. C. Deerwester, S. T. Dumais, T. K. Landauer, et al., “Indexing by latent semantic analysis,” JASIS, Vol.41, No.6, pp. 391-407, 1990.

3. T. Hofmann, “Unsupervised Learning by Probabilistic Latent Semantic Analysis,” Machine Learning, No.1, pp. 177-196, 2001.

4. D. M. Blei, Y. N. Andrew, and I. J. Michael, “Latent Dirichlet Allocation,” J. of Machine Learning Research, No.3, pp. 993-1022, 2003.

5. C. Juan, Y. D. Zhang, L. I. JinTao, and T. Sheng, “A Method of Adaptively Selecting Best LDA Model Based on Density,” Chinese J. of Computers, No.10, pp. 1781-1787, 2008.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3