A Genetic-Algorithm-Based Temporal Subtraction for Chest Radiographs

Author:

Inaba Takeshi, ,He Lifeng,Suzuki Kenji,Murakami Kazuhito,Chao Yuyan, ,

Abstract

To assess pathological chest change, radiologists compare the same patient's chest radiographs taken at different times. Supporting radiologists' diagnostics, temporal-subtraction images constructed from the previous and current radiographs have enhanced the visualization of pathological change. This paper presents a genetic-algorithm-based temporal subtraction for chest radiographs. First, we extract ribs from previous and current images and use them for global matching of the two images. Then, we divide the lung area in the current image into many subareas. For individual subarea, we use the genetic algorithm for local matching to find its corresponding area in the previous image efficiently. Results demonstrated that pathological change were accurately enhanced in temporal-subtraction images without major misregistration artifacts, accurately visualizing of pathological change and proving useful in improving radiologists, diagnostic performance.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Data Mining Techniques and Applications;Journal of Advanced Computational Intelligence and Intelligent Informatics;2017-01-20

2. Deformable image registration for temporal subtraction of chest radiographs;International Journal of Computer Assisted Radiology and Surgery;2013-09-28

3. A Mutual-Information-Based Global Matching Method for Chest-Radiography Temporal Subtraction;Journal of Advanced Computational Intelligence and Intelligent Informatics;2012-11-20

4. A global registration method for temporal subtraction of chest radiographs;SPIE Proceedings;2010-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3