Intelligent Control of Pre-Chamber Pressure Based on Working Condition Identification for the Coke Dry Quenching Process

Author:

Ren Yi123ORCID,Lai Xuzhi123ORCID,Hu Jie123ORCID,Du Sheng123ORCID,Chen Luefeng123ORCID,Wu Min123ORCID

Affiliation:

1. School of Automation, China University of Geosciences, No.388 Lumo Road, Hongshan District, Wuhan 430074, China

2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, No.388 Lumo Road, Hongshan District, Wuhan 430074, China

3. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, No.388 Lumo Road, Hongshan District, Wuhan 430074, China

Abstract

The pre-chamber pressure is an important control parameter that affects the coke dry quenching process. It often fluctuates violently and is detrimental for the safe operation of the coke dry quenching process. This study proposes an intelligent control method for the pre-chamber pressure based on working condition identification for the coke dry quenching process to realize stable control of the pre-chamber pressure. First, by describing the coke dry quenching process and analyzing the factors affecting the pre-chamber pressure, an intelligent control strategy was developed. Then, the K-means clustering algorithm was used to identify the working conditions of pre-chamber, and the working conditions were divided into two categories: stable and fluctuating. For stable conditions, a fuzzy proportional-integral-derivative controller was designed to improve the pressure control accuracy. For fluctuating conditions, an expert controller was designed to rapidly adjust the pressure. Finally, experiments based on actual data were performed and the results showed that the proposed method can effectively improve the control accuracy of pressure under different conditions. This satisfies the requirements for a continuous coke dry quenching process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Higher Education Discipline Innovation Project

China Postdoctoral Science Foundation

Publisher

Fuji Technology Press Ltd.

Reference26 articles.

1. H. Zameer, Y. Wang, D. G. Vasbieva, and Q. Abbas, “Exploring a pathway to carbon neutrality via reinforcing environmental performance through green process innovation, environmental orientation and green competitive advantage,” J. of Environmental Management, Vol.296, Article No.113383, 2021. https://doi.org/10.1016/j.jenvman.2021.113383

2. Q. Zhang, W. Zhang, Y. J. Wang, J. Xu, and X. C. Cao, “Potential of energy saving and emission reduction and energy efficiency improvement of China’s steel industry,” Iron & Steel, Vol.54, No.2, pp. 7-14, 2019.

3. Z. W. Du, “Energy saving, emission reduction and environmental protection analysis of CDQ technology,” Metallurgy and Materials, Vol.41, No.2, pp. 77-78, 2021.

4. C. Chen, M. Wu, L. F. Chen, W. Zhang, and S. Du, “Flatness prediction method based on operating mode recognition for roller quenching process,” Control Theory & Applications, Vol.38, No.9, pp. 1407-1413, 2021.

5. S. Du, M. Wu, L. F. Chen, W. H. Cao, and W. Pedrycz, “Operating mode recognition of iron ore sintering process based on the clustering of time series data,” Control Engineering Practice, Vol.96, Article No.104297, 2020. https://doi.org/10.1016/j.conengprac.2020.104297

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3