3D Ship Hull Design Direct Optimization Using Generative Adversarial Network

Author:

Trinh Luan Thanh1ORCID,Hamagami Tomoki1,Okamoto Naoya2

Affiliation:

1. Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-0067, Japan

2. Japan Marine United Corporation, Yokohama Blue Avenue Building, 4-4-2 Minatomirai, Nishi-ku, Yokohama, Kanagawa 220-0012, Japan

Abstract

The direct optimization of ship hull designs using deep learning algorithms is increasingly expected, as it proposes optimization directions for designers almost instantaneously, without relying on complex, time-consuming, and expensive hydrodynamic simulations. In this study, we proposed a GAN-based 3D ship hull design optimization method. We eliminated the dependence on hydrodynamic simulations by training a separate model to predict ship performance indicators. Instead of a standard discriminator, we applied a relativistic average discriminator to obtain better feedback regarding the anomalous designs. We add two new loss functions for the generator: one restricts design variability, and the other sets improvement targets using feedback from the performance estimation model. In addition, we propose a new training strategy to improve learning effectiveness and avoid instability during training. The experimental results show that our model can optimize the form factor by 5.251% while limiting the deterioration of other indicators and the variability of the ship hull design.

Funder

Japan Marine United Corporation

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3