Research on the Messenger UAV Mission Planning Based on Sampling Transformation Algorithm

Author:

Wang Benxiang1,Xin Bin1,Ding Yulong2,Li Yang3

Affiliation:

1. School of Automation, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China

2. Peng Cheng Laboratory, Shibi Long Park Phase I, Shenzhen 518000, China

3. Beijing Institute of Electronic Engineering, Yongding Road, Haidian District, Beijing 102206, China

Abstract

In recent years, there has been a significant development in unmanned platform technologies, specifically unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). As a result, their application scenarios have expanded considerably. Unmanned platforms are considered integral components of the Internet of Things system. However, certain challenges arise when dealing with specialized tasks, such as navigating complex urban low-altitude terrain with multiple obstacles and limited communication capabilities. These challenges can greatly impact the efficiency of the system due to information isolation. To address this issue, a messenger drone mechanism is introduced in this paper, which utilizes air superiority to facilitate indirect communication between unmanned platforms. Additionally, a task sequence planning algorithm based on sampling transformation is designed. This algorithm efficiently assigns the drone to mobile UGVs by discretely sampling their paths and considering the UAV-UGV motion relationship. By transforming the problem into an asymmetric traveler problem, it allows for a fast solution. Finally, the effectiveness of the algorithm is verified through comparative analysis in different scenarios.

Funder

National Outstanding Youth Talents Support Program

Basic Science Center Programs

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3