Mining Association Rules from TV Watching Log for TV Program Recommendation

Author:

Takama Yasufumi, ,Hattori Shunichi

Abstract

This paper proposes a method for extracting association rules from users’ TV watching logs, aiming at TV program recommendation. In Japan, a TV is usually located in a living room, where family members communicate each other while watching the same TV programs. Based on the choice of TV channels and conversation while watching TV, we can estimate other person’s interests and preference, which is a basis for establishing friendly relationship between others. Therefore, giving the robot a capability of recommending TV program will contribute to establish friendly communication with human partners. Furthermore, transition to digital terrestrial television broadcasting (DTTB) will bring us difficulty in finding TV program worth watching from a number of TV channels in near future. Therefore, a method for recommending TV programs will be one of the most important technologies for realizing intelligent support of our daily lives, such as a partner robot. The proposed method extracts association rules from user profiles that are generated from their TV watching logs, based on which TV programs are recommend to a target user. In order to have extensibility in terms of information resource for generating user profile, the method employs a user profile of commonly-used bookmark format. When association rules are extracted from a set of the profiles, generalization law is introduced so that variety of users’ behaviors can be reduced. Experiments are performed with actual users’ logs, and the result shows the generalization law contributes to increase the accuracy of TV program recommendation.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3