Author:
Uehara Kiyohiko, ,Hirota Kaoru,
Abstract
A method is proposed for fuzzy inference which can propagate convex fuzzy-constraints from given facts to consequences in various forms by applying a number of fuzzy rules, particularly when asymmetric fuzzy sets are used for given facts and/or fuzzy rules. The conventionalmethod, α-GEMS (α-level-set and generalized-mean-based inference in synergy with composition), cannot be performed with asymmetric fuzzy sets; it can be conducted only with symmetric fuzzy sets. In order to cope with asymmetric fuzzy sets as well as symmetric ones, a control scheme is proposed for the fuzzy-constraint propagation, which is α-cut based and can be performed independently at each level of α. It suppresses an excessive specificity decrease in consequences, particularly stemming from the asymmetricity. Thereby, the fuzzy constraints of given facts are reflected to those of consequences, to a feasible extent. The theoretical aspects of the control scheme are also presented, wherein the specificity of the support sets of consequences is evaluated via linguistic truth values (LTVs). The proposed method is named α-GEMST (α-level-set and generalized-meanbased inference in synergy with composition via LTV control) in order to differentiate it from α-GEMS. Simulation results show that α-GEMST can be properly performed, particularly with asymmetric fuzzy sets. α-GEMST is expected to be applied to the modeling of given systems with various fuzzy input-output relations.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference26 articles.
1. L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. Fuzzy Syst., Vol.4, No.2, pp. 103-111, 1996.
2. L. A. Zadeh, “Inference in fuzzy logic via generalized constraint propagation,” Proc. 1996 26thInt. Symp. on Multi-Valued Logic (ISMVL’96), pp. 192-195, 1996.
3. A. Kaufmann, “Introduction to the theory of fuzzy subsets,” New York: Academic, Vol.1, 1975.
4. N. R. Pal and J. C. Bezdek, “Measuring Fuzzy Uncertainty,” IEEE Trans. Fuzzy Syst., Vol.2, No.2, pp. 107-118, 1994.
5. R. R. Yager, “On the specificity of a possibility distribution,” Fuzzy Sets Syst., Vol.50, pp. 279-292, 1992.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献