Acceleration of Reinforcement Learning with Incomplete Prior Information

Author:

Terashima Kento, ,Takano Hirotaka,Murata Junichi

Abstract

Reinforcement learning is applicable to complex or unknown problems because the solution search process is done by trial-and-error. However, the calculation time for the trial-and-error search becomes larger as the scale of the problem increases. Therefore, in order to decrease calculation time, some methods have been proposed using the prior information on the problem. This paper improves a previously proposed method utilizing options as prior information. In order to increase the learning speed even with wrong options, methods for option correction by forgetting the policy and extending initiation sets are proposed.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference11 articles.

1. R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” MIT Press, 1998.

2. A. McGovern, R. S. Sutton, and A. H. Fagg, “Roles of Macro-Actions in Accelerating Reinforcement Learning,” the Proc. of the 1997 Grace Hopper Celebration of Women in Computing, pp. 1-6, 1997.

3. R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning,” Artificial Intelligence, Vol.112, pp. 181-211, 1999.

4. M. Shokri, “Knowledge of opposite actions for reinforcement learning,” Applied Soft Computing, Vol.11, pp. 4097-4109, 2011.

5. R. S. Sutton, D. Precup, and S. Singh, “Intra-Option Learning about Temporally Abstract Actions,” In Proc. of the 15th Int. Conf. on Machine Learning, pp. 556-564, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3