Computer-Based Blood Type Identification Using Image Processing and Machine Learning Algorithm

Author:

Rosales Marife A., ,Luna Robert G. de

Abstract

Blood type identification is a method used for determining the specific blood type of a person. It is a requirement before blood transfusions or blood donations is undertaken especially during emergency situations. Presently, the tests are performed manually by medical technologists in the laboratories. Sometimes, manual blood typing is prone to human error, resulting to incorrect blood grouping and wrong typing in the report, leading to fatal transfusion reactions. The study was focused on the development of a device that is capable of identifying the blood type of an individual using an image processing and machine learning algorithms. The study covered the identification of eight blood types, specifically rhesus positive and negative, A, B, O, and AB, by developing a capturing box integrated with a web camera system that could effectively capture blood sample images. In this study, the methodologies utilized were image processing through segmentation, feature extraction by color and texture properties, and different machine learning algorithms. After training, the results showed that coarse tree DT has the best performance accuracy score of 97.77% using 70:30 holdout validation. The testing results showed that the system is 100% accurate as validated by a registered medical technologist.

Funder

the Office of Research and Publications of De La Salle Lipa

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference19 articles.

1. A. Sahastrabuddhe and S. Ajij, “Blood Group Detection and RBC, WBC Counting: An Image Processing Approach,” Int. J. Eng. Comput. Sci., Vol.5, Issue 10, pp. 18635-18639, 2016.

2. M. Sidhu et al., “Report on errors in pretransfusion testing from a tertiary care center: A step toward transfusion safety,” Asian J. Transfus. Sci., Vol.10, No.1, pp. 48-52, 2016.

3. R. A. Rathod and R. A. Pathan, “Determination and Classification of Human Blood Types Using SIFT Transform and SVM Classifier,” Int. J. of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol.5, Issue 11, pp. 8467-8473, 2016.

4. S. M. N. Fathima, “Classification of Blood Types by Microscope Color Images,” Int. J. Mach. Learn. Comput., Vol.3, No.4, pp. 376-379, 2013.

5. A. Ferraz, V. Carvalho, and F. Soares, “A Prototype for Blood Typing Based on Image Processing,” Sensordevices 4th Int. Conf. Sens. Device Technol. Appl., pp. 139-144, 2013.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Procedure to Identify Human Blood Groups by using Image Processing Assisted Learning Principle;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

2. Machine learning in transfusion medicine: A scoping review;Transfusion;2023-11-10

3. Cattle Icare Monitoring System (CIMS): Remote Monitoring of CATtle’s Heart Rate, Temperature, and Daily Steps with Smart Sprinkler System;Intelligent Computing and Optimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3