A Facial Expressions Recognition Method Using Residual Network Architecture for Online Learning Evaluation

Author:

Long Duong Thang,

Abstract

Facial expression recognition (FER) has been widely researched in recent years, with successful applications in a range of domains such as monitoring and warning of drivers for safety, surveillance, and recording customer satisfaction. However, FER is still challenging due to the diversity of people with the same facial expressions. Currently, researchers mainly approach this problem based on convolutional neural networks (CNN) in combination with architectures such as AlexNet, VGGNet, GoogleNet, ResNet, SENet. Although the FER results of these models are getting better day by day due to the constant evolution of these architectures, there is still room for improvement, especially in practical applications. In this study, we propose a CNN-based model using a residual network architecture for FER problems. We also augment images to create a diversity of training data to improve the recognition results of the model and avoid overfitting. Utilizing this model, this study proposes an integrated system for learning management systems to identify students and evaluate online learning processes. We run experiments on different datasets that have been published for research: CK+, Oulu-CASIA, JAFFE, and collected images from our students (FERS21). Our experimental results indicate that the proposed model performs FER with a significantly higher accuracy compared with other existing methods.

Funder

Ministry of Education and Training, Vietnam

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference24 articles.

1. Y. Shang, M. Sato, and M. Kasuga, “An Interactive System with Facial Expression Recognition,” J. Adv. Comput. Intell. Intell. Inform., Vol.9, No.6, pp. 637-642, 2005.

2. S. Sawardekar and S. R. Naik, “Facial Expression Recognition using Efficient LBP and CNN,” Int. Research J. of Engineering and Technology (IRJET), Vol.5, Issue 6, pp. 2273-2277, 2018.

3. S. Li and W. Deng, “Deep Facial Expression Recognition: A Survey,” IEEE Trans. on Affective Computing, doi: 10.1109/TAFFC.2020.2981446, 2020.

4. S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network,” Sensors, Vol.21, No.9, Article No.3046, 2021.

5. M. Wang et al., “Deep Face Recognition: A Survey,” School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 2019.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-11-20

2. Applications of convolutional neural networks in education: A systematic literature review;Expert Systems with Applications;2023-11

3. Offline Handwritten Chinese Character Using Convolutional Neural Network: State-of-the-Art Methods;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-07-20

4. Speech-Section Extraction Using Lip Movement and Voice Information in Japanese;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3