Fuzzy Clustering in Assortative and Disassortative Networks

Author:

Kojima Ryoichi,Legaspi Roberto,Murofushi Toshiaki, ,

Abstract

Despite the significance of assortativity as a property of networks that paves for the emergence of new structural types, surprisingly, there has been little research done on assortativity. Assortative networks are perhaps among the most prominent examples of complex networks believed to be governed by common phenomena, thereby producing structures far from random. Further, certain vertices possess high centrality and can be regarded as significant and influential vertices that can become cluster centers that connect with high membership to many of the surrounding vertices. We propose a fuzzy clustering method to meaningfully characterize assortative, as well as disassortative, networks by adapting the Bonacichi’s power centrality to seek the high degree centrality vertices to become cluster centers. Moreover, we leverage our novel modularity function to determine the optimal number of clusters, as well as the optimal membership among clusters. However, due to the difficulty of finding real-world assortative network datasets that come with ground truths, we evaluated our method using synthetic data but possibly bearing resemblance to real-world network datasets as they were generated by the Lancichinetti–Fortunato–Radicchi benchmark. Our results show our non-hierarchical method outperforms a known hierarchical fuzzy clustering method, and also performs better than a well-known membership-based modularity function. Our method proved to perform beyond satisfactory for both assortative and disassortative networks.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3