Complementary Convolution Residual Networks for Semantic Segmentation in Street Scenes with Deep Gaussian CRF

Author:

Li Yongbo,Ma Yuanyuan,Cai Wendi,Xie Zhongzhao,Zhao Tao, ,

Abstract

To understand surrounding scenes accurately, the semantic segmentation of images is vital in autonomous driving tasks, such as navigation, and route planning. Currently, convolutional neural networks (CNN) are widely employed in semantic segmentation to perform precise prediction in the dense pixel level. A recent trend in network design is the stacking of small convolution kernels. In this work, small convolution kernels (3 × 3) are decomposed into complementary convolution kernels (1 × 3 + 3 × 1, 3 × 1 + 1 × 3), the complementary small convolution kernels perform better in the classification and location tasks of semantic segmentation. Subsequently, a complementary convolution residual network (CCRN) is proposed to improve the speed and accuracy of semantic segmentation. To further locate the edge of objects precisely, A coupled Gaussian conditional random field (G-CRF) is utilized for CCRN post-processing. Proposal approach achieved 81.8% and 73.1% mean Intersection-over-Union (mIoU) on PASCAL VOC-2012 test set and Cityscapes test set, respectively.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offline Handwritten Chinese Character Using Convolutional Neural Network: State-of-the-Art Methods;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-07-20

2. BIBED-Seg: Block-in-Block Edge Detection Network for Guiding Semantic Segmentation Task of High-Resolution Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

3. Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3