Author:
Wanyama Tom, ,Far Behrouz Homayoun
Abstract
In Multi-Criteria Decision Making problems such as choosing a development policy, selecting software products, or searching for commodities to purchase, it is often necessary to evaluate solution options in respect of multiple objectives. The solution alternative that performs best in all the objectives is the dominant solution, and it should be selected to solve the problem. However, usually the selection objectives are incomparable and conflicting, making it impossible to have a dominant solution among the alternatives. In such cases, tradeoff analysis is required to identify the objectives that can be optimized, and those that can be comprised in order to choose a winning solution. In this paper we present a tradeoff analysis model based on the principles of qualitative reasoning that provides visualization support for understanding interaction and tradeoff dependences among solutions evaluation criteria which affect the tradeoff among selection objectives. Moreover, the decision support system based on our tradeoff analysis model facilitates discovery of hidden solution features so as improve the completeness and certainty of the user preference model.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference13 articles.
1. A. Mohamed, T. Wanyama, G. Ruhe, A. Eberlein, and B. Far, “COTS Evaluation Supported By Knowledge Bases,” LNCS 3096, pp. 43-54, 2004.
2. B. Kuipers, “Commonsense Reasoning about Causality: Deriving Behavior from Structure,” Artificial Intelligence, Vol.24, Issue 1-3, pp. 169-203, December, 1984.
3. B. Kuipers, C. Chiu, D. T. D. Molle, and D. Throop, “Higher-Order Derivative Constraints in Qualitative Simulation,” Artificial Intelligence, Vol.51, pp. 343-379, 1991.
4. B. W. Boehm, C. M. Abts, and E. K. Bailey, “COCOTS Software Integration Cost Model: an Overview,” Proceedings of the California Software Symposium, October, 1998.
5. C. J. Petrie, T. A. Webster, and M. R. Cutkosky, “Using Pareto Optimality to Coordinate Distributed Agents,” AIEDAM Special Issue on Conflict Management, Vol.9, pp. 269-281, 1995.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献