Learning and Transfer of Human Real-Time Control Strategies

Author:

Nechyba Michael C., ,Xu Yangsheng

Abstract

In this paper, we address the problem of how to model human real-time control strategy and how to transfer that model to robots or humans. This class of problems is significant to a number of research areas, such as the Intelligent Vehicle Highway System, human-machine interfacing, space telerobotics, and virtual reality. Human models can benefit not only the development of more intelligent control strategies for robots and machines, but can also improve the transfer of human intelligence and skill from expert to apprentice. In this paper, we illustrate a system we developed for modeling human control strategy through the use of flexible cascade neural networks, which adjust the size of the network as part of the training process, and which can be extended with variable activation functions and node-decoupled extended Kalman filtering to achieve faster learning and better error convergence. We implement the method in modeling human real-time driving strategy and show that the HCS models converge to stable behavior, while preserving the differences between individuals’ varying control strategies. We discuss the use of HCS models for transferring skill from human expert to human apprentice; rather than learn directly from a human expert, a HCS model serves as a virtual teacher to a learning apprentice. Finally, we outline on-going research issues and future work related to human control strategy modeling and transfer, including stochastic model validation, and HCS model input selection.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3