Development of a Control System and Interface Design Based on an Electric Wheelchair

Author:

Woo Jinseok, ,Yamaguchi Kyosuke,Ohyama Yasuhiro

Abstract

Recently, personal mobility has been researched and developed to make short-distance travel within the community more comfortable and convenient. However, from the viewpoint of personal mobility, there are problems such as difficulty in picking up items while shopping when operating the joystick for shopping and the inability to use hands freely. Accordingly, because the speed of personal mobility can be controlled by foot stepping like an accelerator pedal, we developed an electric wheelchair system that can control the speed by pedal operation. Furthermore, we developed a control system that considers the ride quality using an electric wheelchair with pedal control. In this study, the proposed method is detailed in three parts. Firstly, to develop the pedal mechanism, a potentiometer was used to detect the angle of the pedal mechanism, and a spring mechanism was designed for return to its original position after the pedal was pushed. Next, we propose a feedback control system that considers the ride quality of the operator. In addition, we integrated the system with a smart device-based robot system to realize the mobility as a service (MaaS). Finally, we present several examples of the system and discuss the applicability of the proposed system.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Human-Centric System Using an IoT-Based Socially Embedded Robot Partner;Journal of Robotics and Mechatronics;2023-06-20

2. Development of IoT Measurement System Integrated with Robotic Personal Mobility Systems;2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS&ISIS);2022-11-29

3. Embodied-AI Wheelchair Framework with Hands-free Interface and Manipulation;2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2022-10-09

4. Exploration on Elderly Accessible Information Interaction Design Using Fuzzy Control;Journal of Sensors;2022-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3