Application of Fuzzy Inference Method in Printing Pressure State Expectation System

Author:

Jing Jianping, ,Takama Yasufumi,Yamaguchi Toru, ,

Abstract

To solve a problem in determining the printing pressure of printing machine for real-world liquid crystal display panel (LCD) production, a Printing Pressure expectation system is proposed based on a fuzzy inference method. In real-world LCD panel production, the recognition of printing pressure conditions and its control is a very important and difficult factor that influences the product quality. It is usually performed by skilled engineers, whose performance highly depends on his tacit knowledge. In the proposed system, a fuzzy inference method is employed to solve the problem. Images of the printing area are observed with cameras, from which abstract features are extracted with image processing. The output of the system is the state of printing pressure, which is divided into 3 states: EXCESSIVE PRESSURE (EP), GOOD PRESSURE (GP), and LOW PRESSURE (LP). Based on the abstract features, the state is estimated with fuzzy membership functions. The shapes of membership functions are determined based on the sampled glasses obtained in actual LCD production line. The experiments are performed with the 2000 glasses that are also printed with actual printing machines, of which the result is compared with that of skilled engineers. It is shown that the proposed system outperforms the quality of skilled engineers. The developed system is installed in actual production line, and it is expected to increase the product quality and production speed, as well as to cut off production costs.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference9 articles.

1. J. Jing, Y. Takama, and T. Yamaguchi, “A Proposal of Printing Pressure Control System based on fuzzy Inference Method,” 6thInternational Symposium on Advanced Intelligent System (ISIS2005), Yosu, Korea, pp. 355-360.

2. K. Hirota, N. Iwamatsu, and Y. Takama, “Proposal of an Internal-State Inference System based on Multimodal Sensory Fusion Method,” IEEE Transactions on Instrumentation and Measurement, Vol.51, No.2, pp. 347-352, 2002/4.

3. K. Hirota, N. Iwamatsu, and Y. Takama, “Inspection System based on Fuzzy Multi-modal Sensory Integration,” 2nd Int. Symposium on Advanced Intelligent System Conference (ISIS2001), Daejeon, Korea, pp. 109-113, 2001/8.

4. K. Hirota, N. Iwamatsu, and Y. Takama, “Toward the Realization of Multimedia Instrumentation based on Soft ComputingTechnology,” Japan-Tunisia Workshop of Informatics (JTWIN2001), Tsukuba, Japan, pp. 90-95, 2001/10.

5. K. Hirota, Y. Takama, and N. Iwamatsu, “Multimedia Nondestructive Inspection based on Computational Intelligence Technology (Opening Lecture),” 2nd Int. Conf. on Intelligent Technologies (INTech2001), Bangkok, Thailand, pp. 14-20, 2001/11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Inference: Its Past and Prospects;Journal of Advanced Computational Intelligence and Intelligent Informatics;2017-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3