Anti-Occlusion Visual Tracking Algorithm for UAVs with Multi-Feature Adaptive Fusion

Author:

Qiu Xiaohong1ORCID,Wu Xin1ORCID,Xu Cong1

Affiliation:

1. School of Software Engineering, Jiangxi University of Science and Technology, No.1180 Shuanggang E Avenue, Qingshanhu District, Nanchang, Jiangxi 330013, China

Abstract

Most of the existing trackers based on discriminative correlation filters use only one feature or a simple linear fusion of multiple features for object tracking, and most of them lack a mechanism to handle occlusions. This leads to poor tracking performance in rapidly changing and easily occluded scenarios, especially on unmanned aerial vehicle (UAV) platforms. To address this issue, this paper proposes an anti-occlusion visual tracking algorithm for UAVs with multi-feature adaptive fusion named multi-feature adaptive fusion and anti-occlusion tracker (MAFAOT). It introduces a novel approach for implementing an adaptive fusion of multiple features. This method transforms the multi-feature fusion problem into a maximization issue by designing a tracking quality evaluation index. It successfully achieves an adaptive fusion of gradient direction histogram and color histogram feature responses. MAFAOT also introduces an anti-occlusion update pool strategy, enabling the tracker to adapt dynamically to various complex scenarios, including occlusion and motion blur. The experimental results on the OTB100 and UAV123 datasets confirm the significant advantages of MAFAOT in terms of precision and success rate compared to other correlation filter-based algorithms. The proposed methods further enhance the expressiveness of the features and effectively avoid the problem of tracker contamination caused by occlusion. Furthermore, this paper applies the proposed methods to the kernelized correlation filters (KCF) algorithm. On the OTB100 dataset, the improved KCF algorithm shows an improvement of 10.94% in precision and 11.11% in success rate. On the UAV123 dataset, it shows an improvement of 14.53% in precision and 16.62% in success rate, further verifying the effectiveness and versatility of the proposed methods.

Funder

National Natural Science Foundation of China

Jiangxi University of Science and Technology Postgraduate Innovation Special Fund

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3