A Proposal of Genetic Operations for BSIM Parameter Extraction Using Real-Coded Genetic Algorithm

Author:

Nishiba Ai, ,Kawanaka Hiroharu,Takase Haruhiko,Tsuruoka Shinji,

Abstract

This paper discusses genetic operations and their effects on evolution of GA in BSIM parameter extraction problems. Generally, Real-Coded Genetic Algorithm (RCGA) using Simplex Crossover (SPX) is often employed to extract BSIM parameter sets. BSIM parameters, however, have recommended operating ranges. There are regarded as constraints, thus all extracted parameters have to be satisfied them. In many cases, when the number of parameters becomes large, the conventional methods generate a lot of infeasible solutions because SPX makes offspring on the simplex plane expanded by ε parameter. This makes search efficiency of GA reduce drastically. Because of these factors, we propose genetic operations considering the constraints to prevent reduction of search efficiency of GA. In this paper, some experiments using actual static characteristic curves of MOS-FET were conducted to validate the proposed method. This paper also discussed the effectiveness of the proposed method.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference13 articles.

1. B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “BSIM: Berkeley short-channel IGFET model for MOS transistors,” IEEE J. of Solid-State Circuits, Vol.22, No.4, pp. 558-566, 1987.

2. M. Chan and C. Hu, “The Engineering of BSIM for the Nano-Technology Era and Beyond,” Modeling and Simulation of Microsystems 2002, pp. 662-665, 2002.

3. BSIM Homepage, http://www-device.eecs.berkeley.edu/˜bsim3/

4. M. Keser and K. Joardar, “Genetic Algorithm Based MOSFET Parameter Extraction,” Technical Proc. of the 2000 Intl. Conf. on Modeling and Simulation of Microsystems, pp. 341-344, 2000.

5. M. Murakawa, M. Miura-Mattausch, and T. Higuchi, “Towards automatic parameter extraction for surface-potential-based MOSFET models with the genetic algorithm,” Proc. of the ASP-DAC 2005, Vol.1, pp. 204-207, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3